Instrument Technologies for the

Detection of Extraterrestrial

Interstellar Robotic Probes

Scot L. Stride

Jet Propulsion Laboratory California Institute of Technology Pasadena, CA, USA

sstride@jpl.nasa.gov

January 24, 2001

Presentation Contents

- Extraterrestrial Intelligence Issues
- Technological Manifestations of ETI
- Observable Manifestations of Interstellar Probes
- The Search for Interstellar Robotic Probes
- Utilizing Commercial-Off-The-Shelf (COTS)
- COTS Instruments
- COTS Sensors
- COTS Computer Hardware
- COTS Computer Software
- A Robotic Observatory Platform
- Summary

Extraterrestrial Intelligence Issues

• A CHALLENGING SET OF QUESTIONS

- * Does ETI exist in the Galaxy?
 - What forms? AI, Organic, Cybernetic, other?

* How old are ETI civilisations?

• Presumed ancient, the older the better (large L)

* How far away is ETI from Earth?

• Within < 500 LY radius would be very fortunate

* How advanced is ETI technologically?

• Presumed to be >> 1000 years beyond Earth technology

* What are the manifestations of ETI Technology?

• Laser Pulses, Radio Beacons, Robotic Probes, Energy Emissions, other?

* How do we search for ETI?

• Optical Telescope, Radio Telescope, Sensor Platforms, other?

* Should our civilization be searching for ETI?

• The scientific debate continues, opinion polls say **YES**!

OSETI-III

OSETI-III Technological Manifestations of ETI

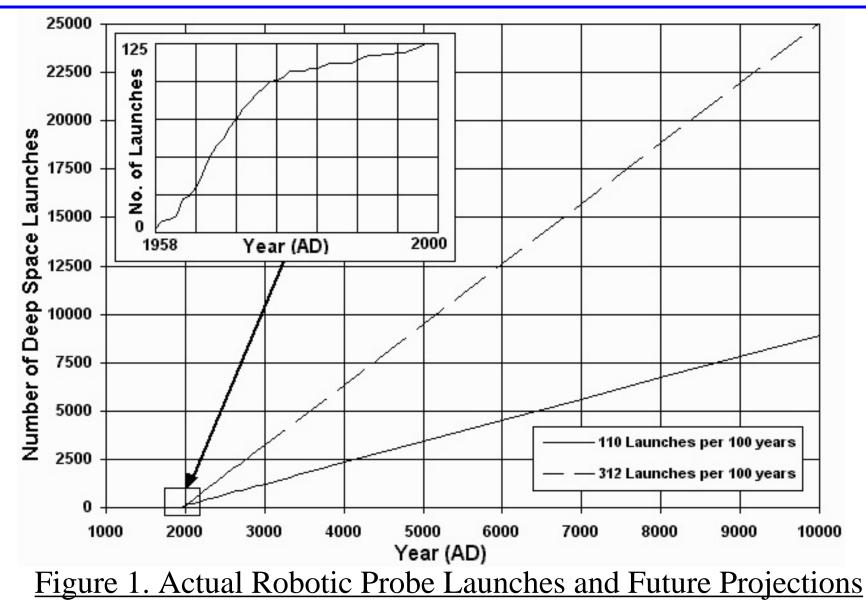
- TWO MAIN TYPES OF MANIFESTATIONS
 - * Energy Markers and Matter Markers
- Electromagnetic Energy Markers
 - * Narrow Band Beacons ($\lambda = 18 \& 21 \text{ cm}$) [Cocconi and Morrison]
 - * RF Beacons (pulsed or CW) in the 1-60 GHz microwave window
 - * RF Surveillance, Radar or Telecommunications leakage
 - * Pulsed Laser Beacons ($0.5 < \lambda < 1 \ \mu m$) [Oliver, Ross, et al]
 - * CW Laser Optical Communications ($0.5 < \lambda < 10 \ \mu m$) [Schwartz & Townes]
 - * Hyperfine Line Emissions ($\lambda = 1.5 \text{ mm}$) [Kardashev, Steffes]
 - * Artificial emission lines (Fraunhofer, Balmer and Lyman series) [Ross, et al]
 - * Stellar dumping to alter solar emission spectra [Drake, Sagan, Shklovski]
 - * Super Nova X-ray Echoes [McLaughlin]
 - * Gamma Bursts from Propulsion Systems [Freitas, Zubrin]

Technological Manifestations of ETI

• Matter Markers – Robotic Probes and Artifacts

- * Relativistic or Fast Flyby's [Maccone, et al]
- * Ancient Artifacts
 - "Drift-Through's" swept up by the solar systems galactic orbit
- * Asteroid Belt Artifacts [Pappagainnis]
- * Heliocentric Orbits
 - Elliptical or Earth-Crossing
- * Self-Reproducing Automata (aka Von Nuemann probes) [Boyce, et al]
- * Libration Points
 - Earth-Moon-Sun Parking Orbits [Freitas and Valdes]
- * Geocentric Orbits
 - High, Low, Cislunar, Transient [Freitas and Valdes]
- * Lunar Orbiters or Artifacts [Arkhipov]
- * Messenger Probes [Bracewell, Freitas]
- * Dyson Sphere's or O'Neill Colonies [Dyson, O'Neill]

OSETI-III


Observable Manifestations of Interstellar Probes

- Possible Observable Manifestations
 - * Ultraviolet, Visible, and Infrared emissions
 - * Soft x-ray or gamma bursts
 - * Ionized gases-hot or cold plasmas
 - * Anomalous electrophonic, ultrasonic or infrasonic emissions
 - * Anomalous telecommunications activity (radio or optical)
 - * Radioactivity
 - * Varying albedos (radar or optical) from peculiar orbiting structures
 - * Physical artifacts or waste products of non-earth origin
 - * Visible signs of intelligent macro, micro or nano structural design
 - * Unambiguous artificial structures on lunar or other solar system bodies
 - * Intelligent and/or autonomous behavior
 - * Statistical anomalies in meteor activity or cometary patterns
 - * Neutrino emissions

- Revisiting the Pros and Cons
 - * PROS
 - The value of robotic exploration of space has been proven
 - Interstellar exploration is within our civilizations grasp
 - Some advanced Type II or III ET civilization's *will* explore with robotic probes and produce physical artifacts
 - The search and detection of robotic probes *can* be carried out with existing technologies
 - Bi-directional Radio/Optical communication with a probe will be relatively fast
 - Validating the existence of *one* probe answers the question: Are We Alone?

- Revisiting the Pros and Cons
 - * CONS
 - Interstellar travel is not feasible or practical
 - Interstellar probes are energetically too expensive
 - Interstellar travel takes too long
 - The search space is too big and the search will take too long
 - Instrument technologies are not mature enough to detect a robotic probe or extraterrestrial artifacts
 - The search program will cost too much and be scientifically unproductive
 - Probes have not been detected so they do not exist

Earth's Robotic Probe Launches

- Proposed Search Process Steps
 - 1. Decide what robotic robotic probe features to search for.
 - 2. Establish a bounded search volume, artifact size and limiting magnitude.
 - 3. Study the available instruments, sensors, computers, software.
 - 4. Match detectable probe features with the available instruments.
 - 5. Develop a set of design requirements and specifications for an automated or robotic observatory.
 - 6. Select a data management and analysis strategy.
 - 7. Derive experimentally testable hypotheses.
 - 8. Design and build the observatory and begin the search.
 - * Concentrate on Detecting Electromagnetic Emissions
 - UV / Visible / IR, Soft X-ray
 - Ionized gases, hot or cold plasmas

- Define a Robotic Probe Search Space, Size and Limiting Magnitude
 - * Search volume very large must be satisfactorily bounded
 - Maximum search distance (d) to sphere of 50 AU solar radii
 - Large artifacts, high albedo
 - Possible but very expensive
 - Cislunar 70,000 Km < d < 384,000 Km
 - Exosphere d > 500 Km
 - Stratosphere to Ionosphere 0 Km < d < 350 Km
 - Possible, preferred and practical with ground based observatories

* Limiting Artifact Size (S_A)

- $1 \text{ m} < S_A < 10 \text{ m}$ [Freitas and Valdes]
 - Based on collision survival, weathering and communication

* Limiting Magnitude (M_L)

• $-12 > M_L > +11$ [Wide FOV, staring array, megapixel CCD, large aperture area]

- Make a study of the available Instruments and Sensors
 - * Understand the strengths and weaknesses of existing technologies
- Match detectable probe manifestations with available instrument and sensor technologies
 - * Choose the correct instruments and sensors for the task
- Develop design requirements for an observatory platform
 - * Observatory functionally designed for unattended autonomous or robotic operation
- Why Robotic Observatories?
 - * Follows current trends in astronomical observing programs
 - * Allows optimal use of scheduling and observing time
 - * Minimizes researcher fatigue, stress and boredom
 - * Automated data acquisition is more reliable and repeatable
 - * Observatory can be used for other (non-SETI) scientific research

• Derive experimentally testable hypotheses, for example:

"Technologically advanced extraterrestrial civilizations have deployed interstellar exploratory probes, and there is a non-zero probability that functioning probes have reached our solar system and are detectable or contactable using existing terrestrial technologies." SLS

- Establish a governing set of protocols and procedural documents
- Data Management and Analysis
 - * Observatory raw data must be properly fused, organized and coded
 - * Construct a database of information for mathematical analysis
- Proof is not Real-Time
 - * A SINGLE OBSERVATION IS NOT GOOD ENOUGH!
 - * Scientifically acceptable proof of robotic probe technology will depend on using statistical methods on a large set of data

OSETI-III

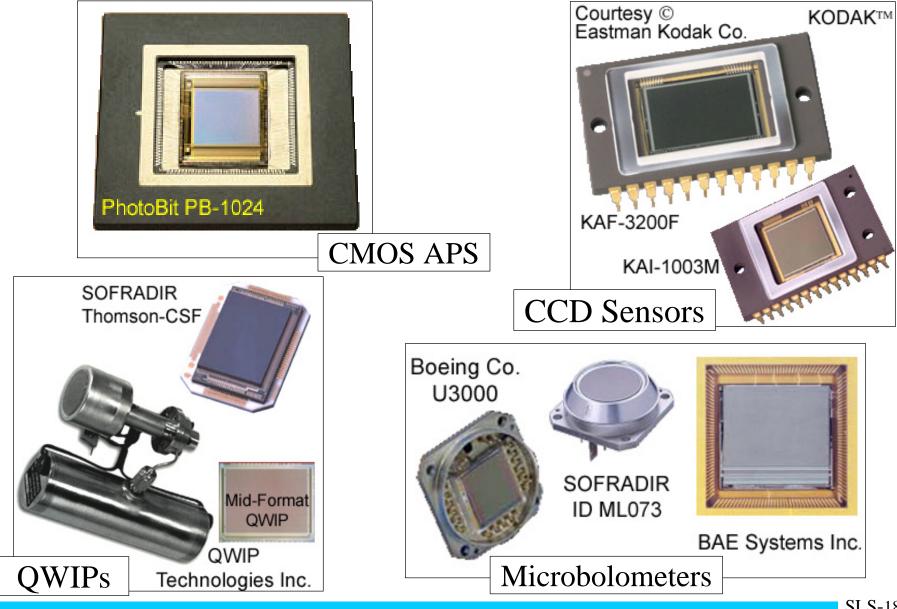
Utilizing Commercial-Off-The-Shelf

- What is COTS?
 - * Off-The-Shelf Instruments, Sensors, Computer Hardware and Software
 - * Mandate established in 1991 to help resolve military hardware obsolescence, supply problems and life-cycle costs
 - * A mechanism for rapidly integrating the newest technologies
- What does COTS mean for SETI?
 - * Variety, Affordability, Flexibility, Modularity, Ruggedization
 - * Systems designed for Performance and Reliability
 - Emphasis on System Functional Test and Validation
 - Reduced Customization
 - * Lower Maintenance, Replacement and Operational costs
 - * Experiments can be replicated by other SETI researchers using the same basic hardware

COTS Instruments

- Instrumentation for Robotic Observatories
 - * Automated Weather Station
 - Localized geophysical and meteorology measurements
 - * GPS Receiver
 - Position-location, time-code, clock reference signals
 - * Optical Telescopes
 - Light gathering and magnification of optical sources
 - Integrated with electronic imaging sensors
 - * Spectrometer or Spectroradiometer
 - Gather wavelength and intensity data on emission spectra
 - * Motorized positioner mounts for optical instruments
 - Pointing or steering of telescope optics and/or sensor arrays
 - * Power Systems
 - Generate portable stand-alone power for the observatory

COTS Instruments

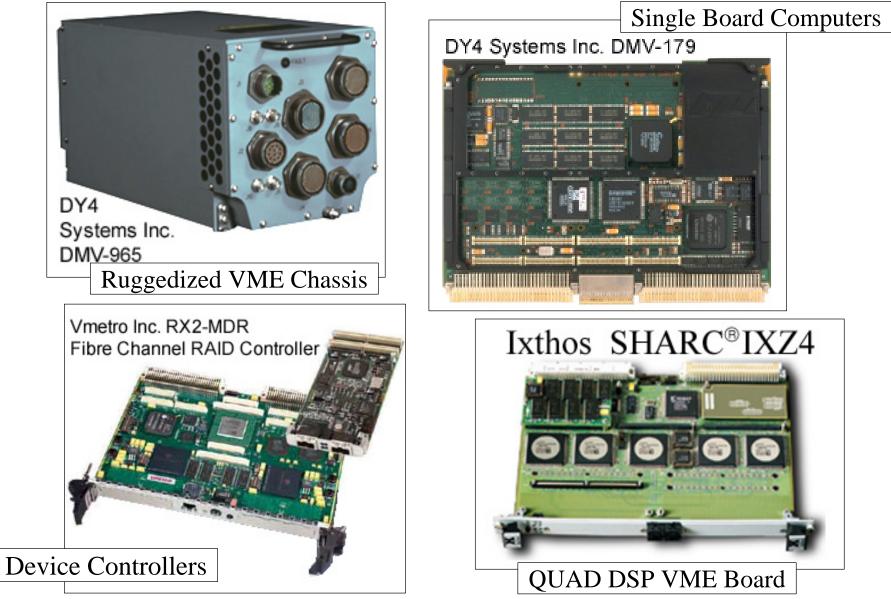


COTS Sensors

- Electromagnetic Spectrum Sensors
 - * CCD (Charge Coupled Devices)
 - Scientific grades, Large apertures, Back-illuminated, High Quantum Efficiency, UV/Visible/NIR Imaging
 - * CMOS APS (Active Pixel Sensor)
 - "Camera-on-a-chip", Digital Output, High Dynamic Range
 - * Microbolometers
 - IR Staring Focal Plane Arrays, $6 < \lambda < 14 \ \mu m$, Cooled and Uncooled, IR Imaging
 - * QWIPs (Quantum Well Infrared Photodetectors)
 - IR Staring Focal Plane Arrays, $8 < \lambda < 12 \mu m$, Narrow or Double-band, Cooled and Uncooled, IR Imaging
- Temperature and Vibration Sensors
 - Thermocouples, RTD, PRT, Thermistor, Semiconductors
 - Miniature accelerometers to monitor platform vibrations

COTS Sensors

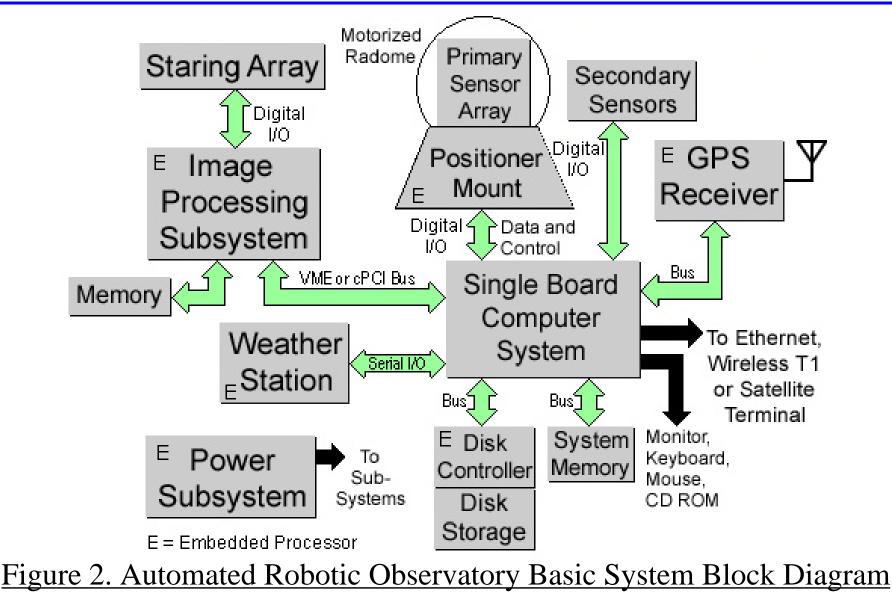
SLS-18


OSETI-III

COTS Computer Hardware

- Modular and Embedded Computing Components
 - * Large Commercial and Military Market
 - Affordable, Reliable Electronic Components
 - * Significant Processing Power and Data Throughput
 - Multiprocessing Computation Capability > 1 Gflop/Sec
 - High Sustained and Burst Data Throughput > 1GB/Sec
 - * Mature, Standard, Modular Bus Architectures and Interfaces
 - VME, cPCI, PC/104+ Bus Interfaces
 - USB, IEEE 1394, RS232/422 Serial Peripheral Interfaces
 - * Embedded Processors
 - 8 and 16-bit microcontrollers perform instrument functions
 - * Ruggedized Chassis for Extreme Environments
 - Robust thermal management and control, low EM emissions

COTS Computer Hardware


COTS Computer Software

- Operating Systems
 - * RTOS Real Time Operating System
 - Deterministic, low latency, low jitter
 - * COTS RTOS
 - POSIX (Portable Operating System Interface) Compliant
 - VxWorks TornadoTM, Linux (Real Time Linux)
 - * Why Real-Time?
 - Reliable response to trigger events or sensor generated interrupts
- Instrument Control and Interface Software
 - * LabVIEWTM
 - * Peripheral Device Drivers
- Signal Processing Software
- Analysis Software
- Utility Software

The software is the single most critical part of the robotic observatory!

OSETI-III

A Robotic Observatory Platform

Summary

- 1. Robotic probes and artifacts are one possible technological manifestation of Type II & III extraterrestrial civilizations.
- 2. Robotic probes will possess observable manifestations.
- 3. The search should focus on electromagnetic emissions.
- 4. The search space, artifact size and limiting magnitudes must all be bounded parameters.
- 5. A robotic observatory platform can be designed and built with COTS instruments, sensors, computer HW and SW.
- 6. Data collected from observatories can be used to test derived hypotheses using statistical methods.
- 7. A search for robotic probe visitation will require time and patience and determination.
- 8. SETV is a scientific search for interstellar robotic probes.

()SETI-III